

### Australian Computational and Linguistics Olympiad National Round 2012

OzCLO website: www.ozclo.org.au

#### Proudly supported by these organisations

Australian Linguistic Society (ALS) Australian Commonwealth Scientific and Research Organization (CSIRO) Defence Science & Technology Organisation (DSTO) Macquarie Dictionary National ICT Australia (NICTA) and these universities Flinders University Griffith University Macquarie University The Australian National University The University of Adelaide The University of Melbourne The University of New England The University of Queensland The University of South Australia The University of Western Australia



Welcome to the Australian Computational and Linguistics Olympiad!

# To be completely fair to all participants across Australia, we need you to read, understand and follow these rules.

#### RULES

- 1. Write your registration number on each page of the Answer Booklet.
- 2. The contest is two hours long.
- 3. Follow the facilitators' instructions carefully.
- 4. If you want clarification on any of the problems, talk to a facilitator.
- 5. You may not discuss the problems with anyone except your team members and the facilitator.
- 6. It's up to each team to decide how you want to solve the problems. You may decide to divide up the problems among your team members, or work on each problem together.
- 7. There are six problems. Each problem is worth a specified number of points, with a total of 100 points in the contest.
- 8. Only work in the **Answer Booklet** will be graded. All your answers should be in the spaces provided in the coloured paper Answer Booklet, <u>not</u> in the individual Contest Booklet. (Make sure you allow enough time to transfer your answers to the Answer Booklet.)
- 9. At the end of the Session, leave all booklets on your table to be collected by the facilitator.

Each problem has been thoroughly checked for clarity, accuracy and solvability. Some are more difficult than others, but all can be solved using ordinary reasoning and analytic skills. You don't need to know anything about linguistics or about these languages in order to solve the problems. If we have done our job well, almost no one will solve all these problems completely in the time allotted. So don't be discouraged if you don't finish everything.

Enjoy!

# A. Gone fishing (1/3)

#### [20 points]

Waanyi is an Australian language traditionally spoken south of the Gulf of Carpentaria in country straddling the border between the state of Queensland and the Northern Territory. Few fluent speakers remain and our knowledge of this language now relies mainly on recordings made between the 1960's and 2008. Study this story and see how much Waanyi you can learn so you are able to answer the questions that follow.

| Ι  | Karrinja nyulu kirriya barrawunu.            | The woman is standing in the house.             |  |  |
|----|----------------------------------------------|-------------------------------------------------|--|--|
| 2  | Jungku nyulu burrurri kundana.               | The man is sitting under a tree.                |  |  |
| 3  | Jungku bula nawunu rajini.                   | They are here in the camp.                      |  |  |
| 4  | Dabarraba nyulu waliji, nangkani burrurrii.  | This man is cooking meat.                       |  |  |
| 5  | Balikajba nyulu, walijiyanyi, nana kirriya.  | She is hungry for meat, that woman.             |  |  |
| 6  | Nayi burrurri, lalujbu nyulu.                | This man, he gets up.                           |  |  |
| 7  | Kanungku barri nyulu jilaba kirriyawurru.    | He then goes up to the woman.                   |  |  |
| 8  | Wijbi barri nyulu kirriya walijiyanyi        | Then he gives some cooked meat to the           |  |  |
|    | jangkaranyiyanyi, karrinjawurru.             | woman who's standing.                           |  |  |
| 9  | Nanangkani kirriyaa, nanganja barri nyulu    | That woman, she then takes that meat with       |  |  |
|    | manii nana waliji burrurrinanja.             | her hand from the man.                          |  |  |
| 10 | Jarrba barri nyulu, balikajini, nanangkani   | Then that woman hungrily eats that meat,        |  |  |
|    | kirriyaa, nana waliji, karrinjana nanawunu   | standing there in the house.                    |  |  |
|    | barrawunu.                                   |                                                 |  |  |
| 11 | Jawikajba barri nyulu burrurri: Ninji, wanyi | She then asks the man. What are you eating?     |  |  |
|    | ninji jarrba?                                |                                                 |  |  |
| 12 | Budangku ngawu jarrba jalanya.               | I'm not eating now.                             |  |  |
| 13 | Jilakanyi ngawu kakuwanyi nanganjaanyi.      | I'll go and catch some fish. I'm going fishing. |  |  |
|    | Karubu-yanyba ngawu.                         |                                                 |  |  |
| 14 | Wunjuku ninji jilaba?                        | Where are you going?                            |  |  |
| 15 | Kularra ngawu jilaba, nanangkurru            | I'm going south, to that river.                 |  |  |
|    | manangkawurru.                               |                                                 |  |  |
| 16 | Ngabungabu, malijibi nyulu kirriyaa, banjana | Late afternoon, the woman followed him, she     |  |  |
|    | nyulu jilaba.                                | went after.                                     |  |  |
| 17 | Najba barri nyulu, burrurri, jungkuwurru,    | Then she saw the man sitting fishing.           |  |  |
|    | karubu-yanykurru.                            |                                                 |  |  |
| 18 | Manangkana nyulu jungku, nana burrurri.      | That man was sitting by the river.              |  |  |
| 19 | Najba nyulu kirriya, kanungkuwurru.          | He saw the woman approaching.                   |  |  |
| 20 | Kawa! Jilanji nangkurru.                     | Come! Walk over here!                           |  |  |
| 21 | Jawikajba nyulu burrurri kanungkunu.         | She asked the man as she approached.            |  |  |
| 22 | Kaku ninji nanganja?                         | Have you caught any fish?                       |  |  |
|    | (Continued on next page)                     |                                                 |  |  |

NATIONAL ROUND

## A. Gone fishing (2/3)

| 23 | Budangku ngawu kakuwanyi.                    | I've got no fish.                          |
|----|----------------------------------------------|--------------------------------------------|
| 24 | Budangku nayi kakuwanyi.                     | There's no fish here.                      |
| 25 | Ngamuyu-kiya ninji nanganja kaku nawunu.     | I thought you would have caught fish here. |
|    | Kaja.                                        | Lots.                                      |
| 26 | Yanyba nyulu nangangi.                       | He said to her:                            |
| 27 | Najba ngawu kaku nawunu wanamini,            | I saw fish swimming here in the water      |
|    | bilikijawurru, bungkuna.                     | yesterday.                                 |
| 28 | Budangku yalu balikajba walijiyanyi jalanya. | They are not hungry for meat right now.    |
| 29 | Ngadijbi yaluwangka bulinjana.               | They are hiding in the water-grass.        |
| 30 | Rajiwurru barri bula kannga, budangku        | They both returned home, without any fish. |
|    | kakuwanyi.                                   |                                            |
| 31 | Balikajini bula kannga rajiwurru, kirriya,   | They both return home hungry – the woman   |
|    | burrurri.                                    | (and) the man.                             |

 A-I From the Waanyi text you will see that there are several words that translate as here in English. Complete the sentences below writing the appropriate 'here' word in the space indicated, then translate your completed sentence into English.

|    | Waanyi              | English |
|----|---------------------|---------|
| a. | Jungku bula         |         |
| b. | Jilaba ngawu        |         |
| c. | Budangku kundaanyi. |         |

#### A-2 Translate these Waanyi sentences into English:

1. Jungku ngawu rajini.

- 2. Jawikajba barri bula nayi burrurri.
- 3. Budangku ngawu balikajba jalanya.

NATIONAL ROUND

# A. Gone fishing (3/3)

A-3 Translate these English sentences into Waanyi:

4. The man and the woman are sitting here.

5. That woman eats fish.

6. This man cooks that meat standing near a tree.

7. She gives the man fish.

**A-4** Explain your answers to A-3 here.

# B. 100 Surnames (1/4)

[30 points]

When the Mongol Emperor Kublai Khan initiated the Yuan dynasty (1271–1368 A.D.) in China, he commissioned Lama 'Gro-mgon Chos-rgyal 'Phags-paa to create a unified script to write all the major languages under his rule. Although the resulting system (now called 'Phags-pa) never caught on beyond official use, some classic Chinese texts survive in a 'Phags-pa version.

The Băijiāxìng (Hundred Surnames) is a Song Dynasty (960–1279) poem listing over 400 classical Chinese family names. Although originally written in Chinese characters, during the Yuan dynasty this poem was written in 'Phags-pa characters as well.

Figure 1: Two consecutive pages of the Băijiāxìng Mĕnggŭwén (The Hundred Surnames in Mongol Script), from a 1340 A.D. manuscript.

| <u>틩쮤</u> 륄룭죓퓑핏죓                                        | 릚쒀 <u>릚</u> 뎮빙륗읩힣                      |
|---------------------------------------------------------|----------------------------------------|
| <b>핃</b> 퉐릘틞眞뜅킔뜅                                        | <u>ල</u> මුවමුමුගමදු                   |
| <u>휰</u> ୁୁଣ୍ଡ 귀 원 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관 관  | 展헼립덿텲뗤퀄펈                               |
| <u> 肖</u> 특징임(3) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | <u> </u> ᇠᇗᅒᆋᆋᆋᆋᆋ                      |
| 씫뎡野뗡킕퉐쥝읤                                                | 22200000000000000000000000000000000000 |
| 릥쯿릵읡띋쮤륗뜱                                                | 띠쭕릘릡횓맄릵Ю                               |
| 쾳틟륑뗥 <u>뾜</u> ээ                                        | 語画面と見聞る意                               |

## **B. 100 Surnames (2/4)**

In Figure 2 are twenty lines (9-28) from the Yuan-era Băiji $\bar{a}x$ ing, with some names missing. The two pages in Figure 1 correspond to a portion of the poem below. Your task is to work out which portion of this poem the pages in Figure 1 represent, and use this to work out what the missing names must be.

#### Figure 2: Yuan-era Băijiāxìng (fragment)

|    | а      | b     | с      | d       | е     | f      | g      | h     |
|----|--------|-------|--------|---------|-------|--------|--------|-------|
| 9  | Fi     | Lem   | Drxim  | Sĭa,    | Lue   | Ho     | Yi     | Thang |
| 10 | Dxing  | ʻIn   | Lo     | Pi,     | Haŭ   | ٠U     | 'An    | Srang |
| н  | Yaŭ    | Yĭu   | Sri    | Fu,     | Bue   | Pen    | Dzi    | Khang |
| 12 | U      | Yĭu   | Ngĭŭan | Pu,     | Ku    | Mung   | Bing   | Hŏang |
| 13 |        | Fu    | Sring  | Taĭ,    | Dam   | Sung   |        | Bang  |
| 14 | Xĭung  | Ki    |        | Khĭu,   |       | Trĭu   | Tung   | Lĭang |
| 15 | Du     |       | Lam    | ,       | Zi    |        |        | Gĭang |
| 16 | Kĭa    | Lu    | Lxiŭ   | Ngue,   | Kĭang | Dung   |        | Kŭaŭ  |
| 17 |        | Sring | Lim    | Xĭaŭ,   | Trung | Zĭu    | Khiŭ   | Laŭ   |
| 18 | Kaŭ    |       | Tshaĭ  | Den,    | Fan   | Hu     |        | Faŭ   |
| 19 | Ngĭu   | Wan   | Tri    | Ko,     |       | Kŏan   | Lu     | Maŭ   |
| 20 | Kĭing  |       |        | Wu,     | Kan   | Xĭaĭ   | ʻIng   | Tsung |
| 21 | Ting   | Sĭŭan | Pue    | Dxing,  | ʻĬu   | Sren   | Hang   | Hung  |
| 22 | Paŭ    | Trĭu  |        | Sri,    | Tshue | Kĭi    | Nriŭ   | Kĭung |
| 23 | Dring  | Xĭi   | Xĭing  | ,       | Bue   | Lĭu    | Ngĭung | ʻUng  |
| 24 | Sĭun   | Yang  |        | Xĭue,   | Trin  | Khĭu   | Kĭa    | Fung  |
| 25 | Nyue   | Yi    | Drĭu   | Kin,    | Ki    | Ping   | Mue    | Zĭung |
| 26 | Tsing  | Dŏan  | Fuŭ    | Wu,     | 'U    | Tsĭaŭ  | Pa     | Kĭung |
| 27 | Wu     | Ngue  | Sran   | Ku,     | Trhĭa | Hiŭ    | Fu     | Bung  |
| 28 | Dzĭŭan | Trhi  | Pan    | Ngĭang, | Tshiŭ | Driung | Yi     | Kĭung |

This transcription represents Yuan dynasty pronunciation rather than modern pronunciation.

- *r* indicates that the previous sound is pronounced with an r-like curve of the tongue, and *h* indicates that the previous sound is pronounced with an extra puff of breath.
- *ny* is pronounced as in *canyon*, *ng* as in *sing*.
- The apostrophe sign (') represents a glottal stop the sound in the middle of "uh-oh".
- x indicates something like a whispered y or a hy sound.
- A ~ over a vowel means that it is a "glide" a short vowel-like sound transitioning into or out of the syllable's main vowel.

## B. 100 Surnames (3/4)

**B-I** Which cell in Figure 2 corresponds to the topmost, rightmost name in Figure 1? (Answer by giving cell coordinates and the name written in that cell.)

CELL \_\_\_\_\_ NAME \_\_\_\_\_

**B-2** Eighteen names are missing from Figure 2. Write them in the table below.

| l 3a | 15f | 19e |  |
|------|-----|-----|--|
| 3g   | 15g | 20Ь |  |
| l4c  | 16g | 20c |  |
| l4e  | 17a | 22c |  |
| I 5b | 18b | 23d |  |
| 15d  | 18g | 24c |  |

**B-3** Here is a partial 3x3 excerpt from one page of a 1418 A.D. manuscript of the Băijiāxìng Měnggŭwén. Six of the names have been left out. Draw them in the spaces provided.





NATIONAL ROUND

# B. 100 Surnames (4/4)

**B-4** Briefly explain how the *Phags-pa* writing system works.

#### C. Roasted Red Potato Pancake (1/2) [15 points]

English has the wonderful feature that it lets you stick two nouns together to make a **compound noun**, whose meaning derives in some idiosyncratic way from the meanings of its parts:

- water fountain: a fountain that supplies water
- water ballet: a ballet that takes place in water
- water meter: a device (called meter) that measures water
- water barometer: a barometer that uses water instead of mercury (to measure air pressure)
- water biscuit: a biscuit that is made with water
- water glass: a glass that is meant to hold water

Even more fun is that one of the two nouns in the compound noun could itself be a compound noun, as in the case of *china tea pot*. But what are we talking about? It depends. You make a [*china* [*tea pot*]] out of fine porcelain called *china* because of its country of origin, whereas you use, maybe exclusively, a [[china tea] pot] to brew tea that either comes from China or which is of a style that is grown in China.

**C-I** The paragraph above used [square brackets] to distinguish two possible meanings of *china tea pot*, one of them being the conventional (probably most obvious) meaning.

Add brackets to each compound below to indicate whether the most likely meaning corresponds to [[X Y] Z] or [X [Y Z]].

- a. ice cream soda
- b. science fiction writer
- c. customer service representative
- d. state chess tournament
- e. Mars Rover landing
- f. plastic water cooler
- g. typeface design report

**C-2** Choose the most likely bracketing for the 4-word compound noun *country* song platinum album. Indicate your choice by ticking the box to the right of the chosen compound.

- a. [country [song [platinum album]]]
- b. [country [[song platinum] album]]
- c. [[country song] [platinum album]]
- d. [[country [song platinum]] album]
- e. [[[country song] platinum] album]

### C. Roasted Red Potato Pancake (2/2)

- **C-3** Give a plausible definition of [[space mission] [[control freak] show]]. (If you must use compound nouns in your definition, define them too.)
- **C-4** Show the most likely bracketing for the 8-noun sequence below. As in the examples above, your bracketing must have the form [X Y], where each of X and Y is either a single-word noun or a compound noun (which must also be written as a bracketing [X Y] and so on.)

| famil  | v board | game  | togetherness | effect | government | studv | author |
|--------|---------|-------|--------------|--------|------------|-------|--------|
| junnij | Douid   | guine | logeniemess  | effect | government | Sludy | uuuioi |

**C-5** Paraphrase below the super8 compound in **C-4** to make clear the meaning expressed by your bracketing analysis above (in **C-4**):

## D. A fox among the h(1/2)

[10 points]

Dr. Dumutche is compiling an online biology reference, and he is currently working on the information retrieval system, so that people can type in questions like "What do whales eat?" or "How much does a bee weigh?" and get relevant answers.

Part of this task involves a process called *stemming* – taking text and figuring out what the "stem" of each word is. (The "stem" is the form of the word without any prefixes or suffixes, so *dance* is the stem of *dancing*, *happy* is the stem of *unhappiness*, etc.). The system needs this so that it can determine that a request about "whales" needs data from the article WHALE and one about "fungi" needs data from the article FUNGUS.

So, Dr. Dumutche writes a series of rules for determining the singular form of plural nouns. He writes a rule, "Remove final S" to handle *whales* $\rightarrow$ *whale*. He writes another rule, "Replace final I with US" to handle *fungi* $\rightarrow$ *fungus* and a rule "Remove final E" to handle *algae* $\rightarrow$ *alga*, plus some other rules to handle other types of plural words and their singular counterparts.

He ends up with the following seven rules:

3

- **1** Remove final S
- 5 Remove final EN
- 2 Replace final ICE with OUSE 6 Replace final A with UM
  - **Replace final** IES with Y **7 Replace final** I with US
- 4 Remove final E

When he applies his little program to a series of real words, however, it doesn't always work. Here is the output of his program:

| Input       | Intended Output | Actual Output |
|-------------|-----------------|---------------|
| cats        | cat             | cat           |
| dogs        | dog             | dog           |
| walruses    | walrus          | walrus        |
| foxes       | fox             | fox           |
| oxen        | ox              | ох            |
| bacteria    | bacterium       | bacterium     |
| fungi       | fungus          | fungus        |
| horses      | horse           | hors          |
| chimpanzees | chimpanzee      | chimpanze     |
| algae       | alga            | algum         |
| guppies     | guppy           | guppi         |
| hens        | hen             | h             |
| mice        | mouse           | mous          |



## **D.** A fox among the h(2/2)

**D-I** What singular form would Dumutche's program produce for the following words:

| Input | Actual Output |
|-------|---------------|
| bees  |               |
| kiwis |               |
| flies |               |
| fleas |               |
| geese |               |

**D-2** What went wrong with Dr. Dumutche's program?

**D-3** What can you determine about the order in which Dr. Dumutche's program applied the rules?

**D-4** Could putting the rules in a different order cause the program to work? What order would produce the intended results? Or why isn't there one? (You can refer to rules by their corresponding number or name.)

# E. Ik heb voorspeld (1/2)

[15 points]

Here are some examples of regular Dutch verbs in their infinitive or plain form and their past participle form; for instance, *slibben* means **to silt up**, and its past participle *geslibd* means **silted up**, as in "It has silted up". The English meaning is given for information only: it has no bearing on the solution.

#### Table I: Some Dutch verb forms

| Verb      | Translation            | Past participle |
|-----------|------------------------|-----------------|
| slibben   | to silt up             | geslibd         |
| klagen    | to complain            | geklaagd        |
| branden   | to burn                | gebrand         |
| weren     | to resist              | geweerd         |
| tochten   | to make a draft (wind) | getocht         |
| tellen    | to count               | geteld          |
| raken     | to hit (target)        | geraakt         |
| lijmen    | to glue                | gelijmd         |
| kunnen    | can, to be able        | gekund          |
| vertellen | to tell                | verteld         |
| telen     | to tell                | geteeld         |
| verhoren  | to cultivate           | verhoord        |
| trouwen   | to interrogate         | getrouwd        |
| schaven   | to marry               | geschaafd       |
| razen     | to shave (woodwork)    | geraasd         |
| prijzen   | to storm               | geprijsd        |
| lappen    | to put a price on      | gelapt          |
| smaken    | to clean               | gesmaakt        |
| praten    | to taste               | gepraat         |
| fietsen   | to cycle               | gefietst        |
| boffen    | to be lucky            | geboft          |

# E. Ik heb voorspeld (2/2)

**E-I**: Write the past participle form for each of the following verbs under its English translation.

| I delen   | 2 horen  | 3 tappen       | 4 verhuizen   | 5 landen  |
|-----------|----------|----------------|---------------|-----------|
| to share  | to hear  | to pour a beer | to move house | to land   |
| 6 kloppen | 7 mokken | 8 roken        | 9 rotten      | 10 tobben |
| to knock  | to sulk  | to smoke       | to rot        | to worry  |

E-2: In E-I you were asked to predict (or derive) the past participle from the plain form. But doing it the other way round, i.e. deriving the plain form from its past participle, is not always possible. Give one reason why. Illustrate your answer with <u>one</u> of the examples given in Table I or in the Table in E-I.

#### F. The Little Engine that Can... Read (1/2)

[10 points]

Professor Monotone's "Astounding Linguistic Knowledge Engine for Making Inferences" (ALKEMI), when given a list of true statements, can deduce further true statements from it. For example, if it knows that "Professor Monotone can read Russian", it can deduce that "Professor Monotone can read". We represent this as:

PROFESSOR MONOTONE CAN READ RUSSIAN 贝 PROFESSOR MONOTONE CAN READ

This means that whenever the first statement is true, the second has to be true, too; there's no way for the first to be true while the second is false. We call this a *legitimate inference*. The Professor's machine can go through statements and, by making particular sorts of changes, generate further statements that follow from them. However, it's not as easy as replacing "can read Russian" with "can read" anywhere you find it. For example, funny things happen when the statement contains one of a set of words called "quantifiers", including every, some, no, a, few, many, three, and so on.



WRONG!

The inference is not legitimate; even if no student reads Russian, it's entirely possible that they read Japanese, English or Spanish.

Each quantifier allows a different pattern of legitimate inferences, so the professor's machine keeps a special table of patterns and uses it to derive new statements from given ones. We've reproduced it on the next page. It may look mysterious, but given the information in this table and a list of inferences produced by the machine, you can work out what each part means and how the machine works.

Figure 1: Inference patterns used by Monotone's Machine

|   | Quantifier | Side  | Direction |
|---|------------|-------|-----------|
| Α | Every      | Left  | Downward  |
| В | Every      | Right | Upward    |
| С | No         | Left  | Upward    |
| D | No         | Right | Downward  |
| Е | Some       | Left  | Upward    |
| F | Some       | Right | Upward    |

Unfortunately, however, there is one error in Figure 1 that is causing the professor's machine to draw some illegitimate inferences!

### F. The Little Engine that Can... Read (2/2)

| Every teacher can read English.             | No student can read Russian.             |  |
|---------------------------------------------|------------------------------------------|--|
| $\hat{\Gamma}$                              | $\hat{\Gamma}$                           |  |
| Every English teacher can read English.     | No student can read English and Russian. |  |
| Some English students can read English.     | Every teacher can read English.          |  |
| Ŷ                                           | Ŷ                                        |  |
| Some English students can read.             | Every Russian teacher can read English.  |  |
| No English student can read Russian.        | Some Russian students can read English.  |  |
| $\hat{\Gamma}$                              | Û                                        |  |
| No student can read Russian.                | Some students can read English.          |  |
| Every teacher can read English and Russian. | No English student can read.             |  |
| Û                                           | Û                                        |  |
| Every teacher can read Russian.             | No English student can read English.     |  |

Figure 2. Some inferences declared legitimate by Monotone's Machine

- F-I Which row (A-F) in Figure I contains a mistake and caused the machine to draw one or more illegitimate inferences? (Answer by writing appropriate letter in box below.)
- F-2 The list of inferences isn't complete. Monotone's Machine could draw additional inferences as well. Using only words that appear in Figure 2, generate another legitimate inference that the machine could have drawn from "Every teacher can read English".
- **F-3** Monotone's Machine doesn't yet understand every quantifier. Help it learn the quantifiers at least three, at most three, and not all by putting "Upward" or "Downward" in the appropriate cells:

|   | Quantifier     | Side  | Direction |
|---|----------------|-------|-----------|
| G | At least three | Left  |           |
| Н | At least three | Right |           |
| Ι | At most three  | Left  |           |
| J | At most three  | Right |           |
| К | Not all        | Left  |           |
| L | Not all        | Right |           |

#### **Problem Credits**

These problems were created by the following people:

Problem A Mary Laughren, The University of Queensland and Richard Hudson, University College London

Problem B Patrick Littell, University of British Columbia

Problem C Noah Smith and Kevin Gimpel, Carnegie Mellon University and Jason Eisner, Johns Hopkins University

> Problem D Patrick Littell, University of British Columbia

Problem E Richard Hudson, University College London

Problem F Patrick Littell, University of British Columbia and James Pustejovsky, Brandeis University

OzCLO problem sets are created in cooperation with: NACLO (North American Computational Linguistics Olympiad) AILO (All Ireland Linguistics Olympiad) UKLO (UK Linguistics Olympiad)